Главная
Поиск репетитора
Коллективный блог
публикаций
Форум (обсуждаем ЕГЭ 2021)
тем и сообщений
Для учебы
Ответы на экзамены
Топики по английскому языку
Топики по немецкому языку
Рефераты по литературе
Психологическая подготовка
Рефераты по история
Доклады по знаменитым личностям
Биографии писателей и поэтов
Орфографии и пунктуации
Экзамен по рус. языку и литературе

Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.

Последние публикации в коллективном блоге:

Интернет-порталы, которые помогут вам успешно сдать ЕГЭ. 1 / Автор: Miriada
Если бы вы инвестировали 00 в Amazon 10 лет назад, вот сколько у вас было бы сейчас 2 / Автор: admin
Методические рекомендации для выпускников по самостоятельной подготовке к ЕГЭ 2 / Автор: admin
В Минпросвещения допустили повторный перенос даты сдачи ЕГЭ 1 / Автор: admin
ЕГЭ не отменят из-за коронавируса, но проведут позже 1 / Автор: admin
Рособрнадзор будет выявлять нарушения во время ЕГЭ 2020 с помощью нейросетей 1 / Автор: admin
ФИПИ опубликовал проекты контрольных измерительных материалов ЕГЭ-2020, существенных изменений нет 4 / Автор: admin
Рособрнадзор проанализировал поступившие предложения по совершенствованию ЕГЭ 2 / Автор: admin

Посещаемые разделы форума:
ЕГЭ 2021, ВУЗы России



Последние обсуждаемые темы на форуме:

Детские игровые комплексы 0 / Раздел: Помогаем друг другу
Мягкая кровать без изголовья 2 / Раздел: Помогаем друг другу
Очень нужно купить права на трактор 0 / Раздел: Помогаем друг другу
кто знает бактерицидные лампы где можно приобрести? 2 / Раздел: Помогаем друг другу
мне нужен магазин со стройматериалами 3 / Раздел: Помогаем друг другу
Можно ли накрутить голосование в конкурсе? 4 / Раздел: Помогаем друг другу
Управление медиафайлами 0 / Раздел: Помогаем друг другу
Скажите, пожалуйста, вот в маршрутках в которых мы ездим 3 / Раздел: ВУЗЫ РОССИИ
Изучение итальянского языка 5 / Раздел: Помогаем друг другу







Список вопросов / Геометрия - 9 класс

Окружность, вписанная в треугольник.



    Окружность называется вписанной в треугольник, если она касается всех его сторон.
    
     [П] Теорема о центре окружности, вписанной в треугольник.
    
     Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.
    
     Дано: АВС — данный треугольник; О — центр вписанной в него окружности; D, Е и F — точки касания окружности со сторонами треугольника (рис. 27).
    
     Доказать: О — точка пересечения биссектрис.
    
     Доказательство. Прямоугольные треугольники AOD иАОЕ равны по гипотенузе и катету. У них гипотенуза ОА — общая, а катеты OD и ОЕ равны как радиусы. Из равенства треугольников следует равенство углов OAD и ОАЕ. А это значит, что точка О лежит на биссектрисе треугольника, проведенной из вершины А. Точно так же доказывается, что точка О лежит на двух биссектрисах треугольника.
    
     [А] Теорема об окружности, вписанной в треугольник.
    
     В любой треугольник можно вписать окружность.
    
     ответы на экзамен
    
     Дано: A ABC — данный треугольник, О — точка пересечения биссектрис, М, L и К — точки касания окружности со сторонами треугольника (рис. 28).
    
     Доказать: О — центр окружности, вписанной в АВС.
    
     Доказательство. Проведем из точки О перпендикуляры OK, OL и ОМ соответственно к сторонам АВ, ВС и СА (см. рис. 28). Так как точка О равноудалена от сторон треугольника ABC, то О К = OL = = ОМ. Поэтому окружность с центром О радиуса ОК проходит через точки K L M. Стороны треугольника ABC касаются этой окружности в точках К, L, М, так как они перпендикулярны к радиусам ОК, OL и ОМ. Значит, окружность с центром О радиуса ОК является вписанной в треугольник ABC. Теорема доказана.
    
     Замечание. Отметим, что в треугольник можно вписать только одну окружность. В самом деле, допустим, что в треугольник можно вписать две окружности. Тогда центр каждой окружности равноудален от сторон треугольника и, значит, совпадает с точкой О пересечения биссектрис треугольника, а радиус равен расстоянию от точки О до сторон треугольника. Следовательно, эти окружности совпадают.
    
    

• Перейти к списку вопросов »




© 2006 - 2023 Поступим.ру Информация:
О проекте
Контакты

Регистрация на сайте
Статистика сообщества
Пользовательское соглашение
Разделы:
Поиск репетитора
Форум сообщества
Коллективный блог
Материалы для учебы
ЕГЭ 2021
RSS:
RSS форума
RSS блога