Последние публикации в коллективном блоге:
Интернет-порталы, которые помогут вам успешно сдать ЕГЭ. 1 / Автор: Miriada
Если бы вы инвестировали 00 в Amazon 10 лет назад, вот сколько у вас было бы сейчас 2 / Автор: admin
Методические рекомендации для выпускников по самостоятельной подготовке к ЕГЭ 2 / Автор: admin
В Минпросвещения допустили повторный перенос даты сдачи ЕГЭ 1 / Автор: admin
ЕГЭ не отменят из-за коронавируса, но проведут позже 1 / Автор: admin
Рособрнадзор будет выявлять нарушения во время ЕГЭ 2020 с помощью нейросетей 1 / Автор: admin
ФИПИ опубликовал проекты контрольных измерительных материалов ЕГЭ-2020, существенных изменений нет 4 / Автор: admin
Рособрнадзор проанализировал поступившие предложения по совершенствованию ЕГЭ 2 / Автор: admin
Посещаемые разделы форума: ЕГЭ 2021, ВУЗы России
Последние обсуждаемые темы на форуме:
Детские игровые комплексы 0 / Раздел: Помогаем друг другу
Мягкая кровать без изголовья 2 / Раздел: Помогаем друг другу
Очень нужно купить права на трактор 0 / Раздел: Помогаем друг другу
кто знает бактерицидные лампы где можно приобрести? 2 / Раздел: Помогаем друг другу
мне нужен магазин со стройматериалами 3 / Раздел: Помогаем друг другу
Можно ли накрутить голосование в конкурсе? 4 / Раздел: Помогаем друг другу
Управление медиафайлами 0 / Раздел: Помогаем друг другу
Скажите, пожалуйста, вот в маршрутках в которых мы ездим 3 / Раздел: ВУЗЫ РОССИИ
Изучение итальянского языка 5 / Раздел: Помогаем друг другу
|
|
Окружность, описанная около треугольника.
Окружность называется описанной около треугольника, если она проходит через все его вершины.
[П] Теорема о центре окружности, описанной около треугольника.
Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведенных через середины этих сторон.
Дано: АВС — данный треугольник; О — центр описанной около него окружности (рис. 30).
Доказать: О — точка пересечения серединных перпендикуляров.
Доказательство. Треугольник АОС равнобедренный: у него стороны О А и ОС равны как радиусы. Медиана OD этого треугольника одновременно является его высотой. Поэтому центр окружности лежит на прямой, перпендикулярной стороне АС и проходящей через ее середину. Точно так же доказывается, что центр окружности лежит на перпендикулярах к двум другим сторонам треугольника.
Замечание. Прямую, проходящую через середину отрезка перпендикулярно к нему, часто называют серединным перпендикуляром. В связи с этим иногда говорят, что центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к сторонам треугольника.
[А] Теорема об окружности, описанной около треугольника.
Около любого треугольника можно описать окружность.
Дано: АВС — данный треугольник; О — точка пересечения серединных перпендикуляров (рис. 31).
Доказать: О — центр окружности, вписанной в АВС.
Доказательство. Обозначим буквой О точку пересечения серединных перпендикуляров к его сторонам и проведем отрезки ОА, ОВ и ОС. Так как точка О равноудалена от вершин треугольника АВС, тоОА = OB — ОС. Поэтому окружность с центром О радиуса ОА проходит через все три вершины треугольника и, значит, является описанной около треугольника ABC.
Замечание. Отметим, что около треугольника можно описать только одну окружность. В самом деле, допустим, что около треугольника можно описать две окружности. Тогда центр каждой окружности равноудален от вершин треугольника и, значит, совпадает с точкой О пересечения серединных перпендикуляров к сторонам треугольника, а радиус равен расстоянию от точки О до вершин треугольника. Следовательно, эти окружности совпадают.
• Перейти к списку вопросов » |
|
|